// Copyright (c) 2012-2015 Ugorji Nwoke. All rights reserved. // Use of this source code is governed by a MIT license found in the LICENSE file. package codec // Contains code shared by both encode and decode. // Some shared ideas around encoding/decoding // ------------------------------------------ // // If an interface{} is passed, we first do a type assertion to see if it is // a primitive type or a map/slice of primitive types, and use a fastpath to handle it. // // If we start with a reflect.Value, we are already in reflect.Value land and // will try to grab the function for the underlying Type and directly call that function. // This is more performant than calling reflect.Value.Interface(). // // This still helps us bypass many layers of reflection, and give best performance. // // Containers // ------------ // Containers in the stream are either associative arrays (key-value pairs) or // regular arrays (indexed by incrementing integers). // // Some streams support indefinite-length containers, and use a breaking // byte-sequence to denote that the container has come to an end. // // Some streams also are text-based, and use explicit separators to denote the // end/beginning of different values. // // During encode, we use a high-level condition to determine how to iterate through // the container. That decision is based on whether the container is text-based (with // separators) or binary (without separators). If binary, we do not even call the // encoding of separators. // // During decode, we use a different high-level condition to determine how to iterate // through the containers. That decision is based on whether the stream contained // a length prefix, or if it used explicit breaks. If length-prefixed, we assume that // it has to be binary, and we do not even try to read separators. // // The only codec that may suffer (slightly) is cbor, and only when decoding indefinite-length. // It may suffer because we treat it like a text-based codec, and read separators. // However, this read is a no-op and the cost is insignificant. // // Philosophy // ------------ // On decode, this codec will update containers appropriately: // - If struct, update fields from stream into fields of struct. // If field in stream not found in struct, handle appropriately (based on option). // If a struct field has no corresponding value in the stream, leave it AS IS. // If nil in stream, set value to nil/zero value. // - If map, update map from stream. // If the stream value is NIL, set the map to nil. // - if slice, try to update up to length of array in stream. // if container len is less than stream array length, // and container cannot be expanded, handled (based on option). // This means you can decode 4-element stream array into 1-element array. // // ------------------------------------ // On encode, user can specify omitEmpty. This means that the value will be omitted // if the zero value. The problem may occur during decode, where omitted values do not affect // the value being decoded into. This means that if decoding into a struct with an // int field with current value=5, and the field is omitted in the stream, then after // decoding, the value will still be 5 (not 0). // omitEmpty only works if you guarantee that you always decode into zero-values. // // ------------------------------------ // We could have truncated a map to remove keys not available in the stream, // or set values in the struct which are not in the stream to their zero values. // We decided against it because there is no efficient way to do it. // We may introduce it as an option later. // However, that will require enabling it for both runtime and code generation modes. // // To support truncate, we need to do 2 passes over the container: // map // - first collect all keys (e.g. in k1) // - for each key in stream, mark k1 that the key should not be removed // - after updating map, do second pass and call delete for all keys in k1 which are not marked // struct: // - for each field, track the *typeInfo s1 // - iterate through all s1, and for each one not marked, set value to zero // - this involves checking the possible anonymous fields which are nil ptrs. // too much work. // // ------------------------------------------ // Error Handling is done within the library using panic. // // This way, the code doesn't have to keep checking if an error has happened, // and we don't have to keep sending the error value along with each call // or storing it in the En|Decoder and checking it constantly along the way. // // The disadvantage is that small functions which use panics cannot be inlined. // The code accounts for that by only using panics behind an interface; // since interface calls cannot be inlined, this is irrelevant. // // We considered storing the error is En|Decoder. // - once it has its err field set, it cannot be used again. // - panicing will be optional, controlled by const flag. // - code should always check error first and return early. // We eventually decided against it as it makes the code clumsier to always // check for these error conditions. import ( "bytes" "encoding" "encoding/binary" "errors" "fmt" "math" "reflect" "sort" "strings" "sync" "time" ) const ( scratchByteArrayLen = 32 initCollectionCap = 32 // 32 is defensive. 16 is preferred. // Support encoding.(Binary|Text)(Unm|M)arshaler. // This constant flag will enable or disable it. supportMarshalInterfaces = true // Each Encoder or Decoder uses a cache of functions based on conditionals, // so that the conditionals are not run every time. // // Either a map or a slice is used to keep track of the functions. // The map is more natural, but has a higher cost than a slice/array. // This flag (useMapForCodecCache) controls which is used. // // From benchmarks, slices with linear search perform better with < 32 entries. // We have typically seen a high threshold of about 24 entries. useMapForCodecCache = false // for debugging, set this to false, to catch panic traces. // Note that this will always cause rpc tests to fail, since they need io.EOF sent via panic. recoverPanicToErr = true // Fast path functions try to create a fast path encode or decode implementation // for common maps and slices, by by-passing reflection altogether. fastpathEnabled = true // if checkStructForEmptyValue, check structs fields to see if an empty value. // This could be an expensive call, so possibly disable it. checkStructForEmptyValue = false // if derefForIsEmptyValue, deref pointers and interfaces when checking isEmptyValue derefForIsEmptyValue = false // if resetSliceElemToZeroValue, then on decoding a slice, reset the element to a zero value first. // Only concern is that, if the slice already contained some garbage, we will decode into that garbage. // The chances of this are slim, so leave this "optimization". // TODO: should this be true, to ensure that we always decode into a "zero" "empty" value? resetSliceElemToZeroValue bool = false ) var ( oneByteArr = [1]byte{0} zeroByteSlice = oneByteArr[:0:0] ) type charEncoding uint8 const ( c_RAW charEncoding = iota c_UTF8 c_UTF16LE c_UTF16BE c_UTF32LE c_UTF32BE ) // valueType is the stream type type valueType uint8 const ( valueTypeUnset valueType = iota valueTypeNil valueTypeInt valueTypeUint valueTypeFloat valueTypeBool valueTypeString valueTypeSymbol valueTypeBytes valueTypeMap valueTypeArray valueTypeTimestamp valueTypeExt // valueTypeInvalid = 0xff ) type seqType uint8 const ( _ seqType = iota seqTypeArray seqTypeSlice seqTypeChan ) // note that containerMapStart and containerArraySend are not sent. // This is because the ReadXXXStart and EncodeXXXStart already does these. type containerState uint8 const ( _ containerState = iota containerMapStart // slot left open, since Driver method already covers it containerMapKey containerMapValue containerMapEnd containerArrayStart // slot left open, since Driver methods already cover it containerArrayElem containerArrayEnd ) type rgetPoolT struct { encNames [8]string fNames [8]string etypes [8]uintptr sfis [8]*structFieldInfo } var rgetPool = sync.Pool{ New: func() interface{} { return new(rgetPoolT) }, } type rgetT struct { fNames []string encNames []string etypes []uintptr sfis []*structFieldInfo } type containerStateRecv interface { sendContainerState(containerState) } // mirror json.Marshaler and json.Unmarshaler here, // so we don't import the encoding/json package type jsonMarshaler interface { MarshalJSON() ([]byte, error) } type jsonUnmarshaler interface { UnmarshalJSON([]byte) error } var ( bigen = binary.BigEndian structInfoFieldName = "_struct" mapStrIntfTyp = reflect.TypeOf(map[string]interface{}(nil)) mapIntfIntfTyp = reflect.TypeOf(map[interface{}]interface{}(nil)) intfSliceTyp = reflect.TypeOf([]interface{}(nil)) intfTyp = intfSliceTyp.Elem() stringTyp = reflect.TypeOf("") timeTyp = reflect.TypeOf(time.Time{}) rawExtTyp = reflect.TypeOf(RawExt{}) uint8SliceTyp = reflect.TypeOf([]uint8(nil)) mapBySliceTyp = reflect.TypeOf((*MapBySlice)(nil)).Elem() binaryMarshalerTyp = reflect.TypeOf((*encoding.BinaryMarshaler)(nil)).Elem() binaryUnmarshalerTyp = reflect.TypeOf((*encoding.BinaryUnmarshaler)(nil)).Elem() textMarshalerTyp = reflect.TypeOf((*encoding.TextMarshaler)(nil)).Elem() textUnmarshalerTyp = reflect.TypeOf((*encoding.TextUnmarshaler)(nil)).Elem() jsonMarshalerTyp = reflect.TypeOf((*jsonMarshaler)(nil)).Elem() jsonUnmarshalerTyp = reflect.TypeOf((*jsonUnmarshaler)(nil)).Elem() selferTyp = reflect.TypeOf((*Selfer)(nil)).Elem() uint8SliceTypId = reflect.ValueOf(uint8SliceTyp).Pointer() rawExtTypId = reflect.ValueOf(rawExtTyp).Pointer() intfTypId = reflect.ValueOf(intfTyp).Pointer() timeTypId = reflect.ValueOf(timeTyp).Pointer() stringTypId = reflect.ValueOf(stringTyp).Pointer() mapStrIntfTypId = reflect.ValueOf(mapStrIntfTyp).Pointer() mapIntfIntfTypId = reflect.ValueOf(mapIntfIntfTyp).Pointer() intfSliceTypId = reflect.ValueOf(intfSliceTyp).Pointer() // mapBySliceTypId = reflect.ValueOf(mapBySliceTyp).Pointer() intBitsize uint8 = uint8(reflect.TypeOf(int(0)).Bits()) uintBitsize uint8 = uint8(reflect.TypeOf(uint(0)).Bits()) bsAll0x00 = []byte{0, 0, 0, 0, 0, 0, 0, 0} bsAll0xff = []byte{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff} chkOvf checkOverflow noFieldNameToStructFieldInfoErr = errors.New("no field name passed to parseStructFieldInfo") ) var defTypeInfos = NewTypeInfos([]string{"codec", "json"}) // Selfer defines methods by which a value can encode or decode itself. // // Any type which implements Selfer will be able to encode or decode itself. // Consequently, during (en|de)code, this takes precedence over // (text|binary)(M|Unm)arshal or extension support. type Selfer interface { CodecEncodeSelf(*Encoder) CodecDecodeSelf(*Decoder) } // MapBySlice represents a slice which should be encoded as a map in the stream. // The slice contains a sequence of key-value pairs. // This affords storing a map in a specific sequence in the stream. // // The support of MapBySlice affords the following: // - A slice type which implements MapBySlice will be encoded as a map // - A slice can be decoded from a map in the stream type MapBySlice interface { MapBySlice() } // WARNING: DO NOT USE DIRECTLY. EXPORTED FOR GODOC BENEFIT. WILL BE REMOVED. // // BasicHandle encapsulates the common options and extension functions. type BasicHandle struct { // TypeInfos is used to get the type info for any type. // // If not configured, the default TypeInfos is used, which uses struct tag keys: codec, json TypeInfos *TypeInfos extHandle EncodeOptions DecodeOptions } func (x *BasicHandle) getBasicHandle() *BasicHandle { return x } func (x *BasicHandle) getTypeInfo(rtid uintptr, rt reflect.Type) (pti *typeInfo) { if x.TypeInfos != nil { return x.TypeInfos.get(rtid, rt) } return defTypeInfos.get(rtid, rt) } // Handle is the interface for a specific encoding format. // // Typically, a Handle is pre-configured before first time use, // and not modified while in use. Such a pre-configured Handle // is safe for concurrent access. type Handle interface { getBasicHandle() *BasicHandle newEncDriver(w *Encoder) encDriver newDecDriver(r *Decoder) decDriver isBinary() bool } // RawExt represents raw unprocessed extension data. // Some codecs will decode extension data as a *RawExt if there is no registered extension for the tag. // // Only one of Data or Value is nil. If Data is nil, then the content of the RawExt is in the Value. type RawExt struct { Tag uint64 // Data is the []byte which represents the raw ext. If Data is nil, ext is exposed in Value. // Data is used by codecs (e.g. binc, msgpack, simple) which do custom serialization of the types Data []byte // Value represents the extension, if Data is nil. // Value is used by codecs (e.g. cbor) which use the format to do custom serialization of the types. Value interface{} } // BytesExt handles custom (de)serialization of types to/from []byte. // It is used by codecs (e.g. binc, msgpack, simple) which do custom serialization of the types. type BytesExt interface { // WriteExt converts a value to a []byte. // // Note: v *may* be a pointer to the extension type, if the extension type was a struct or array. WriteExt(v interface{}) []byte // ReadExt updates a value from a []byte. ReadExt(dst interface{}, src []byte) } // InterfaceExt handles custom (de)serialization of types to/from another interface{} value. // The Encoder or Decoder will then handle the further (de)serialization of that known type. // // It is used by codecs (e.g. cbor, json) which use the format to do custom serialization of the types. type InterfaceExt interface { // ConvertExt converts a value into a simpler interface for easy encoding e.g. convert time.Time to int64. // // Note: v *may* be a pointer to the extension type, if the extension type was a struct or array. ConvertExt(v interface{}) interface{} // UpdateExt updates a value from a simpler interface for easy decoding e.g. convert int64 to time.Time. UpdateExt(dst interface{}, src interface{}) } // Ext handles custom (de)serialization of custom types / extensions. type Ext interface { BytesExt InterfaceExt } // addExtWrapper is a wrapper implementation to support former AddExt exported method. type addExtWrapper struct { encFn func(reflect.Value) ([]byte, error) decFn func(reflect.Value, []byte) error } func (x addExtWrapper) WriteExt(v interface{}) []byte { bs, err := x.encFn(reflect.ValueOf(v)) if err != nil { panic(err) } return bs } func (x addExtWrapper) ReadExt(v interface{}, bs []byte) { if err := x.decFn(reflect.ValueOf(v), bs); err != nil { panic(err) } } func (x addExtWrapper) ConvertExt(v interface{}) interface{} { return x.WriteExt(v) } func (x addExtWrapper) UpdateExt(dest interface{}, v interface{}) { x.ReadExt(dest, v.([]byte)) } type setExtWrapper struct { b BytesExt i InterfaceExt } func (x *setExtWrapper) WriteExt(v interface{}) []byte { if x.b == nil { panic("BytesExt.WriteExt is not supported") } return x.b.WriteExt(v) } func (x *setExtWrapper) ReadExt(v interface{}, bs []byte) { if x.b == nil { panic("BytesExt.WriteExt is not supported") } x.b.ReadExt(v, bs) } func (x *setExtWrapper) ConvertExt(v interface{}) interface{} { if x.i == nil { panic("InterfaceExt.ConvertExt is not supported") } return x.i.ConvertExt(v) } func (x *setExtWrapper) UpdateExt(dest interface{}, v interface{}) { if x.i == nil { panic("InterfaceExxt.UpdateExt is not supported") } x.i.UpdateExt(dest, v) } // type errorString string // func (x errorString) Error() string { return string(x) } type binaryEncodingType struct{} func (_ binaryEncodingType) isBinary() bool { return true } type textEncodingType struct{} func (_ textEncodingType) isBinary() bool { return false } // noBuiltInTypes is embedded into many types which do not support builtins // e.g. msgpack, simple, cbor. type noBuiltInTypes struct{} func (_ noBuiltInTypes) IsBuiltinType(rt uintptr) bool { return false } func (_ noBuiltInTypes) EncodeBuiltin(rt uintptr, v interface{}) {} func (_ noBuiltInTypes) DecodeBuiltin(rt uintptr, v interface{}) {} type noStreamingCodec struct{} func (_ noStreamingCodec) CheckBreak() bool { return false } // bigenHelper. // Users must already slice the x completely, because we will not reslice. type bigenHelper struct { x []byte // must be correctly sliced to appropriate len. slicing is a cost. w encWriter } func (z bigenHelper) writeUint16(v uint16) { bigen.PutUint16(z.x, v) z.w.writeb(z.x) } func (z bigenHelper) writeUint32(v uint32) { bigen.PutUint32(z.x, v) z.w.writeb(z.x) } func (z bigenHelper) writeUint64(v uint64) { bigen.PutUint64(z.x, v) z.w.writeb(z.x) } type extTypeTagFn struct { rtid uintptr rt reflect.Type tag uint64 ext Ext } type extHandle []extTypeTagFn // DEPRECATED: Use SetBytesExt or SetInterfaceExt on the Handle instead. // // AddExt registes an encode and decode function for a reflect.Type. // AddExt internally calls SetExt. // To deregister an Ext, call AddExt with nil encfn and/or nil decfn. func (o *extHandle) AddExt( rt reflect.Type, tag byte, encfn func(reflect.Value) ([]byte, error), decfn func(reflect.Value, []byte) error, ) (err error) { if encfn == nil || decfn == nil { return o.SetExt(rt, uint64(tag), nil) } return o.SetExt(rt, uint64(tag), addExtWrapper{encfn, decfn}) } // DEPRECATED: Use SetBytesExt or SetInterfaceExt on the Handle instead. // // Note that the type must be a named type, and specifically not // a pointer or Interface. An error is returned if that is not honored. // // To Deregister an ext, call SetExt with nil Ext func (o *extHandle) SetExt(rt reflect.Type, tag uint64, ext Ext) (err error) { // o is a pointer, because we may need to initialize it if rt.PkgPath() == "" || rt.Kind() == reflect.Interface { err = fmt.Errorf("codec.Handle.AddExt: Takes named type, especially not a pointer or interface: %T", reflect.Zero(rt).Interface()) return } rtid := reflect.ValueOf(rt).Pointer() for _, v := range *o { if v.rtid == rtid { v.tag, v.ext = tag, ext return } } if *o == nil { *o = make([]extTypeTagFn, 0, 4) } *o = append(*o, extTypeTagFn{rtid, rt, tag, ext}) return } func (o extHandle) getExt(rtid uintptr) *extTypeTagFn { var v *extTypeTagFn for i := range o { v = &o[i] if v.rtid == rtid { return v } } return nil } func (o extHandle) getExtForTag(tag uint64) *extTypeTagFn { var v *extTypeTagFn for i := range o { v = &o[i] if v.tag == tag { return v } } return nil } type structFieldInfo struct { encName string // encode name // only one of 'i' or 'is' can be set. If 'i' is -1, then 'is' has been set. is []int // (recursive/embedded) field index in struct i int16 // field index in struct omitEmpty bool toArray bool // if field is _struct, is the toArray set? } // func (si *structFieldInfo) isZero() bool { // return si.encName == "" && len(si.is) == 0 && si.i == 0 && !si.omitEmpty && !si.toArray // } // rv returns the field of the struct. // If anonymous, it returns an Invalid func (si *structFieldInfo) field(v reflect.Value, update bool) (rv2 reflect.Value) { if si.i != -1 { v = v.Field(int(si.i)) return v } // replicate FieldByIndex for _, x := range si.is { for v.Kind() == reflect.Ptr { if v.IsNil() { if !update { return } v.Set(reflect.New(v.Type().Elem())) } v = v.Elem() } v = v.Field(x) } return v } func (si *structFieldInfo) setToZeroValue(v reflect.Value) { if si.i != -1 { v = v.Field(int(si.i)) v.Set(reflect.Zero(v.Type())) // v.Set(reflect.New(v.Type()).Elem()) // v.Set(reflect.New(v.Type())) } else { // replicate FieldByIndex for _, x := range si.is { for v.Kind() == reflect.Ptr { if v.IsNil() { return } v = v.Elem() } v = v.Field(x) } v.Set(reflect.Zero(v.Type())) } } func parseStructFieldInfo(fname string, stag string) *structFieldInfo { // if fname == "" { // panic(noFieldNameToStructFieldInfoErr) // } si := structFieldInfo{ encName: fname, } if stag != "" { for i, s := range strings.Split(stag, ",") { if i == 0 { if s != "" { si.encName = s } } else { if s == "omitempty" { si.omitEmpty = true } else if s == "toarray" { si.toArray = true } } } } // si.encNameBs = []byte(si.encName) return &si } type sfiSortedByEncName []*structFieldInfo func (p sfiSortedByEncName) Len() int { return len(p) } func (p sfiSortedByEncName) Less(i, j int) bool { return p[i].encName < p[j].encName } func (p sfiSortedByEncName) Swap(i, j int) { p[i], p[j] = p[j], p[i] } // typeInfo keeps information about each type referenced in the encode/decode sequence. // // During an encode/decode sequence, we work as below: // - If base is a built in type, en/decode base value // - If base is registered as an extension, en/decode base value // - If type is binary(M/Unm)arshaler, call Binary(M/Unm)arshal method // - If type is text(M/Unm)arshaler, call Text(M/Unm)arshal method // - Else decode appropriately based on the reflect.Kind type typeInfo struct { sfi []*structFieldInfo // sorted. Used when enc/dec struct to map. sfip []*structFieldInfo // unsorted. Used when enc/dec struct to array. rt reflect.Type rtid uintptr numMeth uint16 // number of methods // baseId gives pointer to the base reflect.Type, after deferencing // the pointers. E.g. base type of ***time.Time is time.Time. base reflect.Type baseId uintptr baseIndir int8 // number of indirections to get to base mbs bool // base type (T or *T) is a MapBySlice bm bool // base type (T or *T) is a binaryMarshaler bunm bool // base type (T or *T) is a binaryUnmarshaler bmIndir int8 // number of indirections to get to binaryMarshaler type bunmIndir int8 // number of indirections to get to binaryUnmarshaler type tm bool // base type (T or *T) is a textMarshaler tunm bool // base type (T or *T) is a textUnmarshaler tmIndir int8 // number of indirections to get to textMarshaler type tunmIndir int8 // number of indirections to get to textUnmarshaler type jm bool // base type (T or *T) is a jsonMarshaler junm bool // base type (T or *T) is a jsonUnmarshaler jmIndir int8 // number of indirections to get to jsonMarshaler type junmIndir int8 // number of indirections to get to jsonUnmarshaler type cs bool // base type (T or *T) is a Selfer csIndir int8 // number of indirections to get to Selfer type toArray bool // whether this (struct) type should be encoded as an array } func (ti *typeInfo) indexForEncName(name string) int { // NOTE: name may be a stringView, so don't pass it to another function. //tisfi := ti.sfi const binarySearchThreshold = 16 if sfilen := len(ti.sfi); sfilen < binarySearchThreshold { // linear search. faster than binary search in my testing up to 16-field structs. for i, si := range ti.sfi { if si.encName == name { return i } } } else { // binary search. adapted from sort/search.go. h, i, j := 0, 0, sfilen for i < j { h = i + (j-i)/2 if ti.sfi[h].encName < name { i = h + 1 } else { j = h } } if i < sfilen && ti.sfi[i].encName == name { return i } } return -1 } // TypeInfos caches typeInfo for each type on first inspection. // // It is configured with a set of tag keys, which are used to get // configuration for the type. type TypeInfos struct { infos map[uintptr]*typeInfo mu sync.RWMutex tags []string } // NewTypeInfos creates a TypeInfos given a set of struct tags keys. // // This allows users customize the struct tag keys which contain configuration // of their types. func NewTypeInfos(tags []string) *TypeInfos { return &TypeInfos{tags: tags, infos: make(map[uintptr]*typeInfo, 64)} } func (x *TypeInfos) structTag(t reflect.StructTag) (s string) { // check for tags: codec, json, in that order. // this allows seamless support for many configured structs. for _, x := range x.tags { s = t.Get(x) if s != "" { return s } } return } func (x *TypeInfos) get(rtid uintptr, rt reflect.Type) (pti *typeInfo) { var ok bool x.mu.RLock() pti, ok = x.infos[rtid] x.mu.RUnlock() if ok { return } // do not hold lock while computing this. // it may lead to duplication, but that's ok. ti := typeInfo{rt: rt, rtid: rtid} ti.numMeth = uint16(rt.NumMethod()) var indir int8 if ok, indir = implementsIntf(rt, binaryMarshalerTyp); ok { ti.bm, ti.bmIndir = true, indir } if ok, indir = implementsIntf(rt, binaryUnmarshalerTyp); ok { ti.bunm, ti.bunmIndir = true, indir } if ok, indir = implementsIntf(rt, textMarshalerTyp); ok { ti.tm, ti.tmIndir = true, indir } if ok, indir = implementsIntf(rt, textUnmarshalerTyp); ok { ti.tunm, ti.tunmIndir = true, indir } if ok, indir = implementsIntf(rt, jsonMarshalerTyp); ok { ti.jm, ti.jmIndir = true, indir } if ok, indir = implementsIntf(rt, jsonUnmarshalerTyp); ok { ti.junm, ti.junmIndir = true, indir } if ok, indir = implementsIntf(rt, selferTyp); ok { ti.cs, ti.csIndir = true, indir } if ok, _ = implementsIntf(rt, mapBySliceTyp); ok { ti.mbs = true } pt := rt var ptIndir int8 // for ; pt.Kind() == reflect.Ptr; pt, ptIndir = pt.Elem(), ptIndir+1 { } for pt.Kind() == reflect.Ptr { pt = pt.Elem() ptIndir++ } if ptIndir == 0 { ti.base = rt ti.baseId = rtid } else { ti.base = pt ti.baseId = reflect.ValueOf(pt).Pointer() ti.baseIndir = ptIndir } if rt.Kind() == reflect.Struct { var siInfo *structFieldInfo if f, ok := rt.FieldByName(structInfoFieldName); ok { siInfo = parseStructFieldInfo(structInfoFieldName, x.structTag(f.Tag)) ti.toArray = siInfo.toArray } pi := rgetPool.Get() pv := pi.(*rgetPoolT) pv.etypes[0] = ti.baseId vv := rgetT{pv.fNames[:0], pv.encNames[:0], pv.etypes[:1], pv.sfis[:0]} x.rget(rt, rtid, nil, &vv, siInfo) ti.sfip = make([]*structFieldInfo, len(vv.sfis)) ti.sfi = make([]*structFieldInfo, len(vv.sfis)) copy(ti.sfip, vv.sfis) sort.Sort(sfiSortedByEncName(vv.sfis)) copy(ti.sfi, vv.sfis) rgetPool.Put(pi) } // sfi = sfip x.mu.Lock() if pti, ok = x.infos[rtid]; !ok { pti = &ti x.infos[rtid] = pti } x.mu.Unlock() return } func (x *TypeInfos) rget(rt reflect.Type, rtid uintptr, indexstack []int, pv *rgetT, siInfo *structFieldInfo, ) { // This will read up the fields and store how to access the value. // It uses the go language's rules for embedding, as below: // - if a field has been seen while traversing, skip it // - if an encName has been seen while traversing, skip it // - if an embedded type has been seen, skip it // // Also, per Go's rules, embedded fields must be analyzed AFTER all top-level fields. // // Note: we consciously use slices, not a map, to simulate a set. // Typically, types have < 16 fields, and iteration using equals is faster than maps there type anonField struct { ft reflect.Type idx int } var anonFields []anonField LOOP: for j, jlen := 0, rt.NumField(); j < jlen; j++ { f := rt.Field(j) fkind := f.Type.Kind() // skip if a func type, or is unexported, or structTag value == "-" switch fkind { case reflect.Func, reflect.Complex64, reflect.Complex128, reflect.UnsafePointer: continue LOOP } // if r1, _ := utf8.DecodeRuneInString(f.Name); r1 == utf8.RuneError || !unicode.IsUpper(r1) { if f.PkgPath != "" && !f.Anonymous { // unexported, not embedded continue } stag := x.structTag(f.Tag) if stag == "-" { continue } var si *structFieldInfo // if anonymous and no struct tag (or it's blank), and a struct (or pointer to struct), inline it. if f.Anonymous && fkind != reflect.Interface { doInline := stag == "" if !doInline { si = parseStructFieldInfo("", stag) doInline = si.encName == "" // doInline = si.isZero() } if doInline { ft := f.Type for ft.Kind() == reflect.Ptr { ft = ft.Elem() } if ft.Kind() == reflect.Struct { // handle anonymous fields after handling all the non-anon fields anonFields = append(anonFields, anonField{ft, j}) continue } } } // after the anonymous dance: if an unexported field, skip if f.PkgPath != "" { // unexported continue } if f.Name == "" { panic(noFieldNameToStructFieldInfoErr) } for _, k := range pv.fNames { if k == f.Name { continue LOOP } } pv.fNames = append(pv.fNames, f.Name) if si == nil { si = parseStructFieldInfo(f.Name, stag) } else if si.encName == "" { si.encName = f.Name } for _, k := range pv.encNames { if k == si.encName { continue LOOP } } pv.encNames = append(pv.encNames, si.encName) // si.ikind = int(f.Type.Kind()) if len(indexstack) == 0 { si.i = int16(j) } else { si.i = -1 si.is = make([]int, len(indexstack)+1) copy(si.is, indexstack) si.is[len(indexstack)] = j // si.is = append(append(make([]int, 0, len(indexstack)+4), indexstack...), j) } if siInfo != nil { if siInfo.omitEmpty { si.omitEmpty = true } } pv.sfis = append(pv.sfis, si) } // now handle anonymous fields LOOP2: for _, af := range anonFields { // if etypes contains this, then do not call rget again (as the fields are already seen here) ftid := reflect.ValueOf(af.ft).Pointer() for _, k := range pv.etypes { if k == ftid { continue LOOP2 } } pv.etypes = append(pv.etypes, ftid) indexstack2 := make([]int, len(indexstack)+1) copy(indexstack2, indexstack) indexstack2[len(indexstack)] = af.idx // indexstack2 := append(append(make([]int, 0, len(indexstack)+4), indexstack...), j) x.rget(af.ft, ftid, indexstack2, pv, siInfo) } } func panicToErr(err *error) { if recoverPanicToErr { if x := recover(); x != nil { //debug.PrintStack() panicValToErr(x, err) } } } // func doPanic(tag string, format string, params ...interface{}) { // params2 := make([]interface{}, len(params)+1) // params2[0] = tag // copy(params2[1:], params) // panic(fmt.Errorf("%s: "+format, params2...)) // } func isImmutableKind(k reflect.Kind) (v bool) { return false || k == reflect.Int || k == reflect.Int8 || k == reflect.Int16 || k == reflect.Int32 || k == reflect.Int64 || k == reflect.Uint || k == reflect.Uint8 || k == reflect.Uint16 || k == reflect.Uint32 || k == reflect.Uint64 || k == reflect.Uintptr || k == reflect.Float32 || k == reflect.Float64 || k == reflect.Bool || k == reflect.String } // these functions must be inlinable, and not call anybody type checkOverflow struct{} func (_ checkOverflow) Float32(f float64) (overflow bool) { if f < 0 { f = -f } return math.MaxFloat32 < f && f <= math.MaxFloat64 } func (_ checkOverflow) Uint(v uint64, bitsize uint8) (overflow bool) { if bitsize == 0 || bitsize >= 64 || v == 0 { return } if trunc := (v << (64 - bitsize)) >> (64 - bitsize); v != trunc { overflow = true } return } func (_ checkOverflow) Int(v int64, bitsize uint8) (overflow bool) { if bitsize == 0 || bitsize >= 64 || v == 0 { return } if trunc := (v << (64 - bitsize)) >> (64 - bitsize); v != trunc { overflow = true } return } func (_ checkOverflow) SignedInt(v uint64) (i int64, overflow bool) { //e.g. -127 to 128 for int8 pos := (v >> 63) == 0 ui2 := v & 0x7fffffffffffffff if pos { if ui2 > math.MaxInt64 { overflow = true return } } else { if ui2 > math.MaxInt64-1 { overflow = true return } } i = int64(v) return } // ------------------ SORT ----------------- func isNaN(f float64) bool { return f != f } // ----------------------- type intSlice []int64 type uintSlice []uint64 type floatSlice []float64 type boolSlice []bool type stringSlice []string type bytesSlice [][]byte func (p intSlice) Len() int { return len(p) } func (p intSlice) Less(i, j int) bool { return p[i] < p[j] } func (p intSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] } func (p uintSlice) Len() int { return len(p) } func (p uintSlice) Less(i, j int) bool { return p[i] < p[j] } func (p uintSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] } func (p floatSlice) Len() int { return len(p) } func (p floatSlice) Less(i, j int) bool { return p[i] < p[j] || isNaN(p[i]) && !isNaN(p[j]) } func (p floatSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] } func (p stringSlice) Len() int { return len(p) } func (p stringSlice) Less(i, j int) bool { return p[i] < p[j] } func (p stringSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] } func (p bytesSlice) Len() int { return len(p) } func (p bytesSlice) Less(i, j int) bool { return bytes.Compare(p[i], p[j]) == -1 } func (p bytesSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] } func (p boolSlice) Len() int { return len(p) } func (p boolSlice) Less(i, j int) bool { return !p[i] && p[j] } func (p boolSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] } // --------------------- type intRv struct { v int64 r reflect.Value } type intRvSlice []intRv type uintRv struct { v uint64 r reflect.Value } type uintRvSlice []uintRv type floatRv struct { v float64 r reflect.Value } type floatRvSlice []floatRv type boolRv struct { v bool r reflect.Value } type boolRvSlice []boolRv type stringRv struct { v string r reflect.Value } type stringRvSlice []stringRv type bytesRv struct { v []byte r reflect.Value } type bytesRvSlice []bytesRv func (p intRvSlice) Len() int { return len(p) } func (p intRvSlice) Less(i, j int) bool { return p[i].v < p[j].v } func (p intRvSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] } func (p uintRvSlice) Len() int { return len(p) } func (p uintRvSlice) Less(i, j int) bool { return p[i].v < p[j].v } func (p uintRvSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] } func (p floatRvSlice) Len() int { return len(p) } func (p floatRvSlice) Less(i, j int) bool { return p[i].v < p[j].v || isNaN(p[i].v) && !isNaN(p[j].v) } func (p floatRvSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] } func (p stringRvSlice) Len() int { return len(p) } func (p stringRvSlice) Less(i, j int) bool { return p[i].v < p[j].v } func (p stringRvSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] } func (p bytesRvSlice) Len() int { return len(p) } func (p bytesRvSlice) Less(i, j int) bool { return bytes.Compare(p[i].v, p[j].v) == -1 } func (p bytesRvSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] } func (p boolRvSlice) Len() int { return len(p) } func (p boolRvSlice) Less(i, j int) bool { return !p[i].v && p[j].v } func (p boolRvSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] } // ----------------- type bytesI struct { v []byte i interface{} } type bytesISlice []bytesI func (p bytesISlice) Len() int { return len(p) } func (p bytesISlice) Less(i, j int) bool { return bytes.Compare(p[i].v, p[j].v) == -1 } func (p bytesISlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] } // ----------------- type set []uintptr func (s *set) add(v uintptr) (exists bool) { // e.ci is always nil, or len >= 1 // defer func() { fmt.Printf("$$$$$$$$$$$ cirRef Add: %v, exists: %v\n", v, exists) }() x := *s if x == nil { x = make([]uintptr, 1, 8) x[0] = v *s = x return } // typically, length will be 1. make this perform. if len(x) == 1 { if j := x[0]; j == 0 { x[0] = v } else if j == v { exists = true } else { x = append(x, v) *s = x } return } // check if it exists for _, j := range x { if j == v { exists = true return } } // try to replace a "deleted" slot for i, j := range x { if j == 0 { x[i] = v return } } // if unable to replace deleted slot, just append it. x = append(x, v) *s = x return } func (s *set) remove(v uintptr) (exists bool) { // defer func() { fmt.Printf("$$$$$$$$$$$ cirRef Rm: %v, exists: %v\n", v, exists) }() x := *s if len(x) == 0 { return } if len(x) == 1 { if x[0] == v { x[0] = 0 } return } for i, j := range x { if j == v { exists = true x[i] = 0 // set it to 0, as way to delete it. // copy(x[i:], x[i+1:]) // x = x[:len(x)-1] return } } return }