'use strict'; // // A dumbed-down, minimal ASN.1 parser / packer combo // // Note: generally I like to write congruent code // (i.e. output can be used as input and vice-versa) // However, this seemed to be more readable and easier // to use written as-is, asymmetrically. // (I also generally prefer to export objects rather // functions but, yet again, asthetics one in this case) var Enc = require('./encoding.js'); // // Packer // // Almost every ASN.1 type that's important for CSR // can be represented generically with only a few rules. var ASN1 = module.exports = function ASN1(/*type, hexstrings...*/) { var args = Array.prototype.slice.call(arguments); var typ = args.shift(); var str = args.join('').replace(/\s+/g, '').toLowerCase(); var len = (str.length/2); var lenlen = 0; var hex = typ; // We can't have an odd number of hex chars if (len !== Math.round(len)) { throw new Error("invalid hex"); } // The first byte of any ASN.1 sequence is the type (Sequence, Integer, etc) // The second byte is either the size of the value, or the size of its size // 1. If the second byte is < 0x80 (128) it is considered the size // 2. If it is > 0x80 then it describes the number of bytes of the size // ex: 0x82 means the next 2 bytes describe the size of the value // 3. The special case of exactly 0x80 is "indefinite" length (to end-of-file) if (len > 127) { lenlen += 1; while (len > 255) { lenlen += 1; len = len >> 8; } } if (lenlen) { hex += Enc.numToHex(0x80 + lenlen); } return hex + Enc.numToHex(str.length/2) + str; }; // The Integer type has some special rules ASN1.UInt = function UINT() { var str = Array.prototype.slice.call(arguments).join(''); var first = parseInt(str.slice(0, 2), 16); // If the first byte is 0x80 or greater, the number is considered negative // Therefore we add a '00' prefix if the 0x80 bit is set if (0x80 & first) { str = '00' + str; } return ASN1('02', str); }; // The Bit String type also has a special rule ASN1.BitStr = function BITSTR() { var str = Array.prototype.slice.call(arguments).join(''); // '00' is a mask of how many bits of the next byte to ignore return ASN1('03', '00' + str); }; // // Parser // ASN1.ELOOP = "uASN1.js Error: iterated over 15+ elements (probably a malformed file)"; ASN1.EDEEP = "uASN1.js Error: element nested 10+ layers deep (probably a malformed file)"; // Container Types are Sequence 0x30, Octect String 0x04, Array? (0xA0, 0xA1) // Value Types are Integer 0x02, Bit String 0x03, Null 0x05, Object ID 0x06, // Sometimes Bit String is used as a container (RSA Pub Spki) ASN1.VTYPES = [ 0x02, 0x03, 0x05, 0x06 ]; ASN1.parse = function parseAsn1(buf, depth) { if (depth >= 10) { throw new Error(ASN1.EDEEP); } var index = 2; // we know, at minimum, data starts after type (0) and lengthSize (1) var asn1 = { type: buf[0], lengthSize: 0, length: buf[1] }; var child; var iters = 0; var adjust = 0; var adjustedLen; // Determine how many bytes the length uses, and what it is if (0x80 & asn1.length) { asn1.lengthSize = 0x7f & asn1.length; // I think that buf->hex->int solves the problem of Endianness... not sure asn1.length = parseInt(Enc.bufToHex(buf.slice(index, index + asn1.lengthSize)), 16); index += asn1.lengthSize; } // High-order bit Integers have a leading 0x00 to signify that they are positive. // Bit Streams use the first byte to signify padding, which x.509 doesn't use. if (0x00 === buf[index] && (0x02 === asn1.type || 0x03 === asn1.type)) { // However, 0x00 on its own is a valid number if (asn1.length > 1) { index += 1; adjust = -1; } } adjustedLen = asn1.length + adjust; // this is a primitive value type if (-1 !== ASN1.VTYPES.indexOf(asn1.type)) { asn1.value = buf.slice(index, index + adjustedLen); return asn1; } asn1.children = []; while (iters < 15 && index <= asn1.length) { iters += 1; child = ASN1.parse(buf.slice(index, index + adjustedLen), (depth || 0) + 1); index += (2 + child.lengthSize + child.length); asn1.children.push(child); } if (iters >= 15) { throw new Error(ASN1.ELOOP); } return asn1; }; /* ASN1._stringify = function(asn1) { //console.log(JSON.stringify(asn1, null, 2)); //console.log(asn1); var ws = ''; function write(asn1) { console.log(ws, 'ch', Enc.numToHex(asn1.type), asn1.length); if (!asn1.children) { return; } asn1.children.forEach(function (a) { ws += '\t'; write(a); ws = ws.slice(1); }); } write(asn1); }; */ ASN1.tpl = function (asn1) { //console.log(JSON.stringify(asn1, null, 2)); //console.log(asn1); var ws = '\t'; var i = 0; var vars = []; var str = ws; function write(asn1, k) { str += "\n" + ws; var val; if ('number' !== typeof k) { // ignore } else { str += ', '; } if (0x02 === asn1.type) { str += "ASN1.UInt("; } else if (0x03 === asn1.type) { str += "ASN1.BitStr("; } else { str += "ASN1('" + Enc.numToHex(asn1.type) + "'"; } if (!asn1.children) { if (0x05 !== asn1.type) { if (0x06 !== asn1.type) { val = asn1.value || new Uint8Array(0); vars.push("// 0x" + Enc.numToHex(val.byteLength) + " (" + val.byteLength + " bytes)\nopts.tpl" + i + " = '" + Enc.bufToHex(val) + "';"); if (0x02 !== asn1.type && 0x03 !== asn1.type) { str += ", "; } str += "Enc.bufToHex(opts.tpl" + i + ")"; } else { str += ", '" + Enc.bufToHex(asn1.value) + "'"; } } str += ")"; return ; } asn1.children.forEach(function (a, j) { i += 1; ws += '\t'; write(a, j); ws = ws.slice(1); }); str += "\n" + ws + ")"; } write(asn1); console.log('var opts = {};'); console.log(vars.join('\n') + '\n'); console.log(); console.log('function buildSchema(opts) {'); console.log('\treturn Enc.hexToBuf(' + str.slice(3) + ');'); console.log('}'); }; module.exports = ASN1;