/// S2 Geometry functions // the regional scoreboard is based on a level 6 S2 Cell // - https://docs.google.com/presentation/d/1Hl4KapfAENAOf4gv-pSngKwvS_jwNVHRPZTTDzXXn6Q/view?pli=1#slide=id.i22 // at the time of writing there's no actual API for the intel map to retrieve scoreboard data, // but it's still useful to plot the score cells on the intel map // the S2 geometry is based on projecting the earth sphere onto a cube, with some scaling of face coordinates to // keep things close to approximate equal area for adjacent cells // to convert a lat,lng into a cell id: // - convert lat,lng to x,y,z // - convert x,y,z into face,u,v // - u,v scaled to s,t with quadratic formula // - s,t converted to integer i,j offsets // - i,j converted to a position along a Hubbert space-filling curve // - combine face,position to get the cell id //NOTE: compared to the google S2 geometry library, we vary from their code in the following ways // - cell IDs: they combine face and the hilbert curve position into a single 64 bit number. this gives efficient space // and speed. javascript doesn't have appropriate data types, and speed is not cricical, so we use // as [face,[bitpair,bitpair,...]] instead // - i,j: they always use 30 bits, adjusting as needed. we use 0 to (1< temp[1]) { if (temp[0] > temp[2]) { return 0; } else { return 2; } } else { if (temp[1] > temp[2]) { return 1; } else { return 2; } } }; var faceXYZToUV = function(face,xyz) { var u,v; switch (face) { case 0: u = xyz[1]/xyz[0]; v = xyz[2]/xyz[0]; break; case 1: u = -xyz[0]/xyz[1]; v = xyz[2]/xyz[1]; break; case 2: u = -xyz[0]/xyz[2]; v = -xyz[1]/xyz[2]; break; case 3: u = xyz[2]/xyz[0]; v = xyz[1]/xyz[0]; break; case 4: u = xyz[2]/xyz[1]; v = -xyz[0]/xyz[1]; break; case 5: u = -xyz[1]/xyz[2]; v = -xyz[0]/xyz[2]; break; default: throw {error: 'Invalid face'}; } return [u,v]; }; S2.XYZToFaceUV = function(xyz) { var face = largestAbsComponent(xyz); if (xyz[face] < 0) { face += 3; } var uv = faceXYZToUV (face,xyz); return [face, uv]; }; S2.FaceUVToXYZ = function(face,uv) { var u = uv[0]; var v = uv[1]; switch (face) { case 0: return [ 1, u, v]; case 1: return [-u, 1, v]; case 2: return [-u,-v, 1]; case 3: return [-1,-v,-u]; case 4: return [ v,-1,-u]; case 5: return [ v, u,-1]; default: throw {error: 'Invalid face'}; } }; var singleSTtoUV = function(st) { if (st >= 0.5) { return (1/3.0) * (4*st*st - 1); } else { return (1/3.0) * (1 - (4*(1-st)*(1-st))); } }; S2.STToUV = function(st) { return [singleSTtoUV(st[0]), singleSTtoUV(st[1])]; }; var singleUVtoST = function(uv) { if (uv >= 0) { return 0.5 * Math.sqrt (1 + 3*uv); } else { return 1 - 0.5 * Math.sqrt (1 - 3*uv); } }; S2.UVToST = function(uv) { return [singleUVtoST(uv[0]), singleUVtoST(uv[1])]; }; S2.STToIJ = function(st,order) { var maxSize = (1<=0; i--) { var mask = 1<=0 && ij[1]>=0 && ij[0] levelN) { posS = posS.substr(0, levelN); } // 3-bit face value faceB = Long.fromString(faceN.toString(10), true, 10).toString(2); while (faceB.length < S2.FACE_BITS) { faceB = '0' + faceB; } // 60-bit position value posB = Long.fromString(posS, true, 4).toString(2); while (posB.length < (2 * levelN)) { posB = '0' + posB; } bin = faceB + posB; // 1-bit lsb marker bin += '1'; // n-bit padding to 64-bits while (bin.length < (S2.FACE_BITS + S2.POS_BITS)) { bin += '0'; } return Long.fromString(bin, true, 2).toString(10); }; S2.toId = S2.toCellId = S2.fromKey = function (key) { var parts = key.split('/'); return S2.fromFacePosLevel(parts[0], parts[1], parts[1].length); }; S2.toKey = S2.fromId = S2.fromCellId = S2.toHilbertQuadkey = function (idS) { var Long = exports.dcodeIO && exports.dcodeIO.Long || require('long'); var bin = Long.fromString(idS, true, 10).toString(2); while (bin.length < (S2.FACE_BITS + S2.POS_BITS)) { bin = '0' + bin; } // MUST come AFTER binstr has been left-padded with '0's var lsbIndex = bin.lastIndexOf('1'); // substr(start, len) // substring(start, end) // includes start, does not include end var faceB = bin.substring(0, 3); // posB will always be a multiple of 2 (or it's invalid) var posB = bin.substring(3, lsbIndex); var levelN = posB.length / 2; var faceS = Long.fromString(faceB, true, 2).toString(10); var posS = Long.fromString(posB, true, 2).toString(4); while (posS.length < levelN) { posS = '0' + posS; } return faceS + '/' + posS; }; S2.latLngToKey = S2.latLngToQuadkey = function (lat, lng, level) { // TODO // // S2.idToLatLng(id) // S2.keyToLatLng(key) // S2.nextFace(key) // prevent wrapping on nextKey // S2.prevFace(key) // prevent wrapping on prevKey // // .toKeyArray(id) // face,quadtree // .toKey(id) // hilbert // .toPoint(id) // ij // .toId(key) // uint64 (as string) // .toLong(key) // long.js // .toLatLng(id) // object? or array?, or string (with comma)? // // maybe S2.HQ.x, S2.GPS.x, S2.CI.x? return S2.S2Cell.FromLatLng({ lat: lat, lng: lng }, level).toHilbertQuadkey(); }; S2.stepKey = function (key, num) { var Long = exports.dcodeIO && exports.dcodeIO.Long || require('long'); var parts = key.split('/'); var faceS = parts[0]; var posS = parts[1]; var level = parts[1].length; var posL = Long.fromString(posS, true, 4); // TODO handle wrapping (0 === pos + 1) // (only on the 12 edges of the globe) var otherL; if (num > 0) { otherL = posL.add(Math.abs(num)); } else if (num < 0) { otherL = posL.subtract(Math.abs(num)); } var otherS = otherL.toString(4); if ('0' === otherS) { console.warning(new Error("face/position wrapping is not yet supported")); } while (otherS.length < level) { otherS = '0' + otherS; } return faceS + '/' + otherS; }; S2.prevKey = function (key) { return S2.stepKey(key, -1); }; S2.nextKey = function (key) { return S2.stepKey(key, 1); }; })('undefined' !== typeof window ? window : module.exports); (function (exports) { 'use strict'; // Adapted from Leafletjs https://searchcode.com/codesearch/view/42525008/ var L = {}; var S2 = exports.S2; if (!exports.L) { exports.L = L; } S2.L = L; L.LatLng = function (/*Number*/ rawLat, /*Number*/ rawLng, /*Boolean*/ noWrap) { var lat = parseFloat(rawLat, 10); var lng = parseFloat(rawLng, 10); if (isNaN(lat) || isNaN(lng)) { throw new Error('Invalid LatLng object: (' + rawLat + ', ' + rawLng + ')'); } if (noWrap !== true) { lat = Math.max(Math.min(lat, 90), -90); // clamp latitude into -90..90 lng = (lng + 180) % 360 + ((lng < -180 || lng === 180) ? 180 : -180); // wrap longtitude into -180..180 } return { lat: lat, lng: lng }; }; L.LatLng.DEG_TO_RAD = Math.PI / 180; L.LatLng.RAD_TO_DEG = 180 / Math.PI; })('undefined' !== typeof window ? window : module.exports);