126 lines
3.3 KiB
Markdown
126 lines
3.3 KiB
Markdown
# rsa-compat.js
|
||
|
||
JavaScript RSA utils that work on Windows, Mac, and Linux with or without C compiler
|
||
|
||
In order to provide a module that "just works" everywhere, we mix and match methods
|
||
from `node.js` core, `ursa`, `forge`, and others.
|
||
|
||
(in the future we'd like to provide the same API to the browser)
|
||
|
||
Examples
|
||
--------
|
||
|
||
Generate an RSA Keypair:
|
||
|
||
```javascript
|
||
var PromiseA = require('bluebird');
|
||
var RSA = PromiseA.promisify(require('rsa-compat').RSA);
|
||
|
||
var bitlen = 1024;
|
||
var exp = 6553;
|
||
var options = { public: true, pem: true, internal: true };
|
||
|
||
RSA.generateKeypair(bitlen, exp, options).then(function (keypair) {
|
||
console.log(keypair);
|
||
});
|
||
```
|
||
|
||
`console.log(keypair)`:
|
||
```javascript
|
||
// http://crypto.stackexchange.com/questions/6593/what-data-is-saved-in-rsa-private-key
|
||
|
||
{ publicKeyPem: '/*base64 pem-encoded string*/'
|
||
, privateKeyPem: '/*base64 pem-encoded string*/'
|
||
, privateKeyJwk: {
|
||
kty: "RSA"
|
||
, n: '/*base64 modulus n = pq*/'
|
||
, e: '/*base64 exponent (usually 6553)*/'
|
||
, d: '/*base64 private exponent (d = e^−1 (mod ϕ(n))/'
|
||
, p: '/*base64 first prime*/'
|
||
, q: /*base64 second prime*/
|
||
, dp: /*base64 first exponent for Chinese remainder theorem (dP = d (mod p−1))*/
|
||
, dq: /*base64 Second exponent, used for CRT (dQ = d (mod q−1))/
|
||
, qi: /*base64 Coefficient, used for CRT (qinv = q^−1 (mod p))*/
|
||
}
|
||
, publicKeyJwk: {
|
||
kty: "RSA"
|
||
, n: /*base64 modulus n = pq*/
|
||
, e: /base64 exponent (usually 6553)*/
|
||
}
|
||
, _ursa: /*undefined or intermediate ursa object*/
|
||
, _forge: /*undefined or intermediate forge object*/
|
||
}
|
||
|
||
// NOTE: this object is JSON safe as _ursa and _forge will be ignored
|
||
```
|
||
|
||
|
||
API
|
||
---
|
||
|
||
* `RSA.generateKeypair(bitlen, exp, options, cb)`
|
||
* `RSA.importPemPrivateKey(privatePem)`
|
||
|
||
### RSA.generateKeypair(bitlen, exp, options, cb)
|
||
|
||
Create a private keypair and export it as PEM, JWK, and/or internal formats
|
||
|
||
```javascript
|
||
RSA.generateKeypair(null, null, null, function (keypair) { /*...*/ });
|
||
|
||
RSA.generateKeypair(1024, 6553, { pem: false, public: false, internal: false }, function (keypair) { /*...*/ });
|
||
```
|
||
|
||
`bitlen`: *1024* (default), 2048, or 4096
|
||
|
||
`exp`: *6553* (default)
|
||
|
||
`options`:
|
||
```javascript
|
||
{ public: false // export public keys
|
||
, pem: false // export pems
|
||
, jwk: true // export jwks
|
||
, internal: false // preserve internal intermediate formats (_ursa, _forge)
|
||
, thumbprint: false // JWK sha256 thumbprint
|
||
, fingerprint: false // NOT IMPLEMENTED (RSA key fingerprint)
|
||
}
|
||
```
|
||
|
||
### RSA.import(keypair, options, cb)
|
||
|
||
Import a private key or public key as PEM, JWK, and/or internal formats
|
||
|
||
`rsa`:
|
||
```javascript
|
||
{ publicKeyPem: '...'
|
||
, privateKeyPem: '...'
|
||
, privateKeyJwk: { /*...*/ }
|
||
, publicKeyJwk: { /*...*/ }
|
||
, _ursa: '[Object object]'
|
||
, _forge: '[Object object]'
|
||
}
|
||
```
|
||
|
||
`options`:
|
||
```
|
||
// same as above, except the following are also added
|
||
{ private: true // export private key
|
||
// (as opposed to using a private key
|
||
// solely to export the public key)
|
||
}
|
||
```
|
||
|
||
### Other
|
||
|
||
(the code is there, but they aren't exposed yet)
|
||
|
||
* `toStandardB64(certbuf.toString('base64'))`
|
||
* `thumbprint(publicPem)`
|
||
* `generateCsr(privateKeyPem, ['example.com'])`
|
||
|
||
```
|
||
cert = toStandardB64(certbuf.toString('base64'))
|
||
cert=cert.match(/.{1,64}/g).join('\n');
|
||
return '-----BEGIN CERTIFICATE-----\n'+cert+'\n-----END CERTIFICATE-----';
|
||
```
|