186 lines
5.2 KiB
Markdown
186 lines
5.2 KiB
Markdown
# rsa-compat.js
|
||
|
||
JavaScript RSA utils that work on Windows, Mac, and Linux with or without C compiler
|
||
|
||
In order to provide a module that "just works" everywhere, we mix and match methods
|
||
from `node.js` core, `ursa`, `forge`, and others.
|
||
|
||
This is useful for **certbot** and **letsencrypt**.
|
||
|
||
(in the future we'd like to provide the same API to the browser)
|
||
|
||
Examples
|
||
--------
|
||
|
||
Generate an RSA Keypair:
|
||
|
||
```javascript
|
||
var RSA = require('rsa-compat').RSA;
|
||
|
||
var bitlen = 1024;
|
||
var exp = 65537;
|
||
var options = { public: true, pem: true, internal: true };
|
||
|
||
RSA.generateKeypair(bitlen, exp, options, function (err, keypair) {
|
||
console.log(keypair);
|
||
});
|
||
```
|
||
|
||
Here's what the object might look like:
|
||
|
||
`console.log(keypair)`:
|
||
```javascript
|
||
|
||
{ publicKeyPem: '-----BEGIN RSA PUBLIC KEY-----\n/*base64 pem-encoded string*/'
|
||
, privateKeyPem: '-----BEGIN RSA PRIVATE KEY-----\n/*base64 pem-encoded string*/'
|
||
, privateKeyJwk: {
|
||
kty: "RSA"
|
||
, n: '/*base64 modulus n = pq*/'
|
||
, e: '/*base64 exponent (usually 65537)*/'
|
||
, d: '/*base64 private exponent (d = e^−1 (mod ϕ(n))/'
|
||
, p: '/*base64 first prime*/'
|
||
, q: '/*base64 second prime*/'
|
||
, dp: '/*base64 first exponent for Chinese remainder theorem (dP = d (mod p−1))*/'
|
||
, dq: '/*base64 Second exponent, used for CRT (dQ = d (mod q−1))/'
|
||
, qi: '/*base64 Coefficient, used for CRT (qinv = q^−1 (mod p))*/'
|
||
}
|
||
, publicKeyJwk: {
|
||
kty: "RSA"
|
||
, n: '/*base64 modulus n = pq*/'
|
||
, e: '/*base64 exponent (usually 65537)*/'
|
||
}
|
||
|
||
, _ursa: '/*undefined or intermediate ursa object*/'
|
||
, _ursaPublic: '/*undefined or intermediate ursa object*/'
|
||
, _forge: '/*undefined or intermediate forge object*/'
|
||
, _forgePublic: '/*undefined or intermediate forge object*/'
|
||
}
|
||
```
|
||
|
||
NOTE: this object is JSON safe as _ursa and _forge will be ignored
|
||
|
||
See http://crypto.stackexchange.com/questions/6593/what-data-is-saved-in-rsa-private-key to learn a little more about the meaning of the specific fields in the JWK.
|
||
|
||
API
|
||
---
|
||
|
||
* `RSA.generateKeypair(bitlen, exp, options, cb)`
|
||
* `RSA.import(keypair, options)`
|
||
* `RSA.exportPrivatePem(keypair)`
|
||
* `RSA.exportPublicPem(keypair)`
|
||
* `RSA.exportPrivateJwk(keypair)`
|
||
* `RSA.exportPublicJwk(keypair)`
|
||
* `RSA.signJws(keypair, payload, nonce)`
|
||
* `RSA.generateCsrPem(keypair, names)`
|
||
* `RSA.generateCsrDerWeb64(keypair, names)`
|
||
|
||
`keypair` can be any object with any of these keys `publicKeyPem, privateKeyPem, publicKeyJwk, privateKeyJwk`
|
||
|
||
### RSA.generateKeypair(bitlen, exp, options, cb)
|
||
|
||
Create a private keypair and export it as PEM, JWK, and/or internal formats
|
||
|
||
```javascript
|
||
RSA.generateKeypair(null, null, null, function (keypair) { /*...*/ });
|
||
|
||
RSA.generateKeypair(1024, 65537, { pem: false, public: false, internal: false }, function (keypair) { /*...*/ });
|
||
```
|
||
|
||
`bitlen`: *1024* (default), 2048, or 4096
|
||
|
||
`exp`: *65537* (default)
|
||
|
||
`options`:
|
||
```javascript
|
||
{ public: false // export public keys
|
||
, pem: false // export pems
|
||
, jwk: true // export jwks
|
||
, internal: false // preserve internal intermediate formats (_ursa, _forge)
|
||
, thumbprint: false // JWK sha256 thumbprint
|
||
, fingerprint: false // NOT IMPLEMENTED (RSA key fingerprint)
|
||
}
|
||
```
|
||
|
||
### RSA.import(keypair, options)
|
||
|
||
Imports keypair as JWKs and internal values `_ursa` and `_forge`.
|
||
|
||
```javascript
|
||
var keypair = RSA.import({ privateKeyPem: '...'});
|
||
|
||
console.log(keypair);
|
||
```
|
||
|
||
```javascript
|
||
{ privateKeyPem: ..., privateKeyJwk: ..., _ursa: ..., _forge: ... }
|
||
```
|
||
|
||
### RSA.export*(keypair)
|
||
|
||
You put in an object like `{ privateKeyPem: '...' }` or `{ publicKeyJwk: {} }`
|
||
and you get back the keys in the format you requested.
|
||
|
||
Note:
|
||
|
||
* Private keys **can** be used to export both private and public keys
|
||
* Public keys can **NOT** be used to generate private keys
|
||
|
||
Example:
|
||
|
||
```javascript
|
||
var keypair = { privateKeyPem: '...' };
|
||
|
||
keypair.publicKeyJwk = RSA.exportPublicJwk(keypair);
|
||
|
||
console.log(keypair);
|
||
```
|
||
|
||
### RSA.signJws(keypair, payload, nonce)
|
||
|
||
Generates a signature in JWS format (necessary for **certbot**/**letsencrypt**).
|
||
|
||
```javascript
|
||
var message = "Hello, World!"
|
||
var nonce = crypto.randomBytes(16).toString('hex');
|
||
var jws = RSA.signJws(keypair, message, nonce);
|
||
|
||
console.log(jws);
|
||
```
|
||
|
||
The result looks like this:
|
||
|
||
```javascript
|
||
{ "header": {
|
||
"alg": "RS256",
|
||
"jwk": {
|
||
"kty": "RSA",
|
||
"n": "AMJubTfOtAarnJytLE8fhNsEI8wnpjRvBXGK/Kp0675J10ORzxyMLqzIZF3tcrUkKBrtdc79u4X0GocDUgukpfkY+2UPUS/GxehUYbYrJYWOLkoJWzxn7wfoo9X1JgvBMY6wHQnTKvnzZdkom2FMhGxkLaEUGDSfsNznTTZNBBg9",
|
||
"e": "AQAB"
|
||
}
|
||
},
|
||
"protected": "eyJub25jZSI6IjhlZjU2MjRmNWVjOWQzZWYifQ",
|
||
"payload": "JLzF1NBNCV3kfbJ5sFaFyX94fJuL2H-IzaoBN-ciiHk",
|
||
"signature": "Wb2al5SDyh5gjmkV79MK9m3sfNBBPjntSKor-34BBoGwr6n8qEnBmqB1Y4zbo-5rmvsoPmJsnRlP_hRiUY86zSAQyfbisTGrGBl0IQ7ditpkfYVm0rBWJ8WnYNqYNp8K3qcD7NW72tsy-XoWEjNlz4lWJeRdEG2Nt4CJgnREH4Y"
|
||
}
|
||
```
|
||
|
||
### RSA.generateCsr*(keypair, names)
|
||
|
||
You can generate the CSR in human-readable or binary / base64 formats:
|
||
|
||
`RSA.generateCsrPem(keypair, names)`:
|
||
```javascript
|
||
var pem = RSA.generateCsrPem(keypair, [ 'example.com', 'www.example.com' ]);
|
||
|
||
console.log(pem);
|
||
```
|
||
|
||
web-safe base64 for **certbot**/**letsencrypt**:
|
||
|
||
`RSA.generateCsrDerWeb64(keypair, names)`:
|
||
```javascript
|
||
var web64 = RSA.generateCsrDerWeb64(keypair, [ 'example.com', 'www.example.com' ]);
|
||
|
||
console.log(web64);
|
||
```
|