294 lines
8.4 KiB
Markdown
294 lines
8.4 KiB
Markdown
# [rsa-compat.js](https://git.coolaj86.com/coolaj86/rsa-compat.js)
|
||
|
||
!["Lifetime Downloads"](https://img.shields.io/npm/dt/rsa-compat.svg "Lifetime Download Count can't be shown")
|
||
!["Monthly Downloads"](https://img.shields.io/npm/dm/rsa-compat.svg "Monthly Download Count can't be shown")
|
||
!["Weekly Downloads"](https://img.shields.io/npm/dw/rsa-compat.svg "Weekly Download Count can't be shown")
|
||
|
||
| A [Root](https://therootcompany.com) Project.
|
||
|
||
JavaScript RSA utils that work on Windows, Mac, and Linux with or without C compiler
|
||
|
||
This was built for the [ACME.js](https://git.coolaj86.com/coolaj86/acme.js) and
|
||
[Greenlock.js](https://git.coolaj86.com/coolaj86/greenlock.js) **Let's Encrypt** clients
|
||
and is particularly suitable for building **certbot**-like clients.
|
||
|
||
(if you're looking for similar tools in the browser, consider [Bluecrypt](https://www.npmjs.com/search?q=bluecrypt))
|
||
|
||
# Install
|
||
|
||
node.js
|
||
|
||
```bash
|
||
npm install --save rsa-compat
|
||
```
|
||
|
||
If you need compatibility with older versions of node, you may need to `npm install --save ursa-optional node-forge`.
|
||
|
||
### CLI
|
||
|
||
```bash
|
||
npm install --global rsa-compat
|
||
```
|
||
|
||
# Usage
|
||
|
||
CLI
|
||
---
|
||
|
||
You can generate keypairs on Windows, Mac, and Linux using rsa-keygen-js:
|
||
|
||
```bash
|
||
# generates a new keypair in the current directory
|
||
rsa-keypiar-js
|
||
```
|
||
|
||
Examples
|
||
--------
|
||
|
||
Generate an RSA Keypair:
|
||
|
||
```javascript
|
||
var RSA = require('rsa-compat').RSA;
|
||
|
||
var options = { bitlen: 2048, exp: 65537, public: true, pem: true, internal: true };
|
||
|
||
RSA.generateKeypair(options, function (err, keypair) {
|
||
console.log(keypair);
|
||
});
|
||
```
|
||
|
||
Here's what the object might look like:
|
||
|
||
`console.log(keypair)`:
|
||
```javascript
|
||
|
||
{ publicKeyPem: '-----BEGIN RSA PUBLIC KEY-----\n/*base64 pem-encoded string*/'
|
||
, privateKeyPem: '-----BEGIN RSA PRIVATE KEY-----\n/*base64 pem-encoded string*/'
|
||
, privateKeyJwk: {
|
||
kty: "RSA"
|
||
, n: '/*base64 modulus n = pq*/'
|
||
, e: '/*base64 exponent (usually 65537)*/'
|
||
, d: '/*base64 private exponent (d = e^−1 (mod ϕ(n))/'
|
||
, p: '/*base64 first prime*/'
|
||
, q: '/*base64 second prime*/'
|
||
, dp: '/*base64 first exponent for Chinese remainder theorem (dP = d (mod p−1))*/'
|
||
, dq: '/*base64 Second exponent, used for CRT (dQ = d (mod q−1))/'
|
||
, qi: '/*base64 Coefficient, used for CRT (qinv = q^−1 (mod p))*/'
|
||
}
|
||
, publicKeyJwk: {
|
||
kty: "RSA"
|
||
, n: '/*base64 modulus n = pq*/'
|
||
, e: '/*base64 exponent (usually 65537)*/'
|
||
}
|
||
}
|
||
```
|
||
|
||
See http://crypto.stackexchange.com/questions/6593/what-data-is-saved-in-rsa-private-key to learn a little more about the meaning of the specific fields in the JWK.
|
||
|
||
# API Summary
|
||
|
||
* `RSA.generateKeypair(options, cb)`
|
||
* (deprecated `RSA.generateKeypair(bitlen, exp, options, cb)`)
|
||
* `RSA.import(options)`
|
||
* (deprecated `RSA.import(keypair, options)`)
|
||
* `RSA.exportPrivatePem(keypair)`
|
||
* `RSA.exportPublicPem(keypair)`
|
||
* `RSA.exportPrivateJwk(keypair)`
|
||
* `RSA.exportPublicJwk(keypair)`
|
||
* `RSA.signJws(keypair, header, protect, payload)`
|
||
* (deprecated `RSA.signJws(keypair, payload, nonce)`)
|
||
* `RSA.generateCsrPem(keypair, names)`
|
||
* `RSA.generateCsrDerWeb64(keypair, names)`
|
||
* `RSA.thumbprint(keypair)`
|
||
|
||
`keypair` can be any object with any of these keys `publicKeyPem, privateKeyPem, publicKeyJwk, privateKeyJwk`
|
||
|
||
### RSA.generateKeypair(options, cb)
|
||
|
||
Create a private keypair and export it as PEM, JWK, and/or internal formats
|
||
|
||
```javascript
|
||
RSA.generateKeypair(null, function (keypair) { /*...*/ });
|
||
|
||
RSA.generateKeypair({
|
||
bitlen: 2048, exp: 65537, pem: false, public: false, internal: false
|
||
}, function (keypair) { /*...*/ });
|
||
```
|
||
|
||
`options`:
|
||
```javascript
|
||
{ public: false // export public keys
|
||
, pem: false // export pems
|
||
, jwk: true // export jwks
|
||
, internal: false // preserve internal intermediate formats (_ursa, _forge)
|
||
, thumbprint: false // JWK sha256 thumbprint
|
||
, fingerprint: false // NOT IMPLEMENTED (RSA key fingerprint)
|
||
}
|
||
```
|
||
|
||
### RSA.import(options)
|
||
|
||
Imports keypair as JWKs and internal values `_ursa` and `_forge`.
|
||
|
||
```javascript
|
||
var keypair = RSA.import({ type: 'RSA', privateKeyPem: '...' });
|
||
|
||
console.log(keypair);
|
||
```
|
||
|
||
```javascript
|
||
{ privateKeyPem: ..., privateKeyJwk: ..., _ursa: ..., _forge: ... }
|
||
```
|
||
|
||
### RSA.export*(keypair)
|
||
|
||
You put in an object like `{ privateKeyPem: '...' }` or `{ publicKeyJwk: {} }`
|
||
and you get back the keys in the format you requested.
|
||
|
||
Note:
|
||
|
||
* Private keys **can** be used to export both private and public keys
|
||
* Public keys can **NOT** be used to generate private keys
|
||
|
||
Example:
|
||
|
||
```javascript
|
||
var keypair = { privateKeyPem: '...' };
|
||
|
||
keypair.publicKeyJwk = RSA.exportPublicJwk(keypair);
|
||
|
||
console.log(keypair);
|
||
```
|
||
|
||
### RSA.signJws(keypair, payload, nonce)
|
||
|
||
Generates a signature in JWS format (necessary for **certbot**/**letsencrypt**).
|
||
|
||
```javascript
|
||
var message = "Hello, World!"
|
||
var nonce = crypto.randomBytes(16).toString('hex');
|
||
var jws = RSA.signJws(keypair, message, nonce);
|
||
|
||
console.log(jws);
|
||
```
|
||
|
||
The result looks like this:
|
||
|
||
```javascript
|
||
{ "header": {
|
||
"alg": "RS256",
|
||
"jwk": {
|
||
"kty": "RSA",
|
||
"n": "AMJubTfOtAarnJytLE8fhNsEI8wnpjRvBXGK/Kp0675J10ORzxyMLqzIZF3tcrUkKBrtdc79u4X0GocDUgukpfkY+2UPUS/GxehUYbYrJYWOLkoJWzxn7wfoo9X1JgvBMY6wHQnTKvnzZdkom2FMhGxkLaEUGDSfsNznTTZNBBg9",
|
||
"e": "AQAB"
|
||
}
|
||
},
|
||
"protected": "eyJub25jZSI6IjhlZjU2MjRmNWVjOWQzZWYifQ",
|
||
"payload": "JLzF1NBNCV3kfbJ5sFaFyX94fJuL2H-IzaoBN-ciiHk",
|
||
"signature": "Wb2al5SDyh5gjmkV79MK9m3sfNBBPjntSKor-34BBoGwr6n8qEnBmqB1Y4zbo-5rmvsoPmJsnRlP_hRiUY86zSAQyfbisTGrGBl0IQ7ditpkfYVm0rBWJ8WnYNqYNp8K3qcD7NW72tsy-XoWEjNlz4lWJeRdEG2Nt4CJgnREH4Y"
|
||
}
|
||
```
|
||
|
||
### RSA.thumbprint(keypair)
|
||
|
||
Generates a JWK thumbprint.
|
||
|
||
`RSA.thumbprint(keypair)`:
|
||
```javascript
|
||
var thumb = RSA.thumbprint(keypair);
|
||
|
||
console.log(thumb);
|
||
```
|
||
|
||
```
|
||
// kK4OXp5CT1FEkHi6WkegldmeTJecSTyJN-DxZ91nQ30
|
||
```
|
||
|
||
### RSA.generateCsr*(keypair, names)
|
||
|
||
You can generate the CSR in human-readable or binary / base64 formats:
|
||
|
||
`RSA.generateCsrPem(keypair, names)`:
|
||
```javascript
|
||
var pem = RSA.generateCsrPem(keypair, [ 'example.com', 'www.example.com' ]);
|
||
|
||
console.log(pem);
|
||
```
|
||
|
||
web-safe base64 for **certbot**/**letsencrypt**:
|
||
|
||
`RSA.generateCsrDerWeb64(keypair, names)`:
|
||
```javascript
|
||
var web64 = RSA.generateCsrDerWeb64(keypair, [ 'example.com', 'www.example.com' ]);
|
||
|
||
console.log(web64);
|
||
```
|
||
|
||
# Old Node Versions
|
||
|
||
In recent versions of node >= v10.12 native RSA key generation is fairly quick for 2048-bit keys
|
||
(though it may still be too slow for some applications with 4096-bit keys).
|
||
|
||
In old versions, however, and especially on ARM and/or MIPS procesors, RSA key generation can be
|
||
very, very slow.
|
||
|
||
In old node versions `ursa` can provide faster key generation, but it must be compiled.
|
||
`ursa` will not compile for new node versions, but they already include the same openssl bindings anyawy.
|
||
|
||
|
||
```bash
|
||
npm install --save ursa
|
||
```
|
||
|
||
Also, if you need **Node < v6** support:
|
||
|
||
```bash
|
||
npm install --save buffer-v6-polyfill
|
||
```
|
||
|
||
## Security and Compatibility
|
||
|
||
**TL;DR**: Use the default values 2048 and 65537 unless you have a really, really good reason to do otherwise.
|
||
|
||
Various platforms *require* these values.
|
||
|
||
Most security experts agree that 4096-bit is no more "secure" than 2048-bit -
|
||
a fundamental vulnerability in the RSA algorithm which causes 2048 to be broken
|
||
will most likely also cause 4096 to be broken
|
||
(i.e. if someone can prove mathematically prove P=NP or a way to predict prime numbers).
|
||
Also, many platforms
|
||
only support 2048 bit keys due to the insecurity of 1024-bit keys (which are not 1/2 secure
|
||
but rather 1/(2^1028) less secure) and the excess computational
|
||
cost of 4096-bit keys (it's not a 2x increase, it's more like a 2^2048 increase).
|
||
|
||
As to why 65537 is even optional as a prime exponent or why it matters... no idea,
|
||
but it does matter.
|
||
|
||
# ChangeLog:
|
||
|
||
* v2.0
|
||
* remove ursa and node-forge deps
|
||
* mark for node v10.11+
|
||
* v1.9
|
||
* consistently handle key generation across node crypto, ursa, and forge
|
||
* move all other operations to rasha.js and rsa-csr.js
|
||
* bugfix non-standard JWKs output (which *mostly* worked)
|
||
* move dependencies to optional
|
||
* v1.4.0
|
||
* remove ursa as dependency (just causes confusion), but note in docs
|
||
* drop node < v6 support
|
||
|
||
# Legal
|
||
|
||
rsa-compat.js directly includes code from
|
||
[Rasha.js](https://git.coolaj86.com/coolaj86/rasha.js)
|
||
and
|
||
[RSA-CSR.js](https://git.coolaj86.com/coolaj86/rsa-csr.js)
|
||
(also [Root](https://therootcompany.com) projects),
|
||
retrofitted for rsa-compat.
|
||
|
||
[rsa-compat.js](https://git.coolaj86.com/coolaj86/rsa-compat.js) |
|
||
MPL-2.0 |
|
||
[Terms of Use](https://therootcompany.com/legal/#terms) |
|
||
[Privacy Policy](https://therootcompany.com/legal/#privacy)
|